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Abstract

Observations have been made and reported that the experimental normal force
coefficients at a constant angle of attack were constant with a variation of more than
2 orders of magnitude of Reynolds number at a free-stream Mach number M∞ of 8.00
and more than 1 order of magnitude variation at M∞ = 6.00 on the same body–wing
hypersonic cruise configuration. These data were recorded under laminar, transi-
tional, and turbulent boundary-layer conditions with both hot-wall and cold-wall
models. This report presents experimental data on 25 configurations of 17 models of
both simple and complex geometry taken at M∞ = 6.00, 6.86, and 8.00 in 4 different
hypersonic facilities. Aerodynamic calculations were made by computational fluid
dynamics (CFD) and engineering methods to analyze these data. The conclusions
were that the normal force coefficients at a given altitude are constant with Reynolds
numbers at hypersonic speeds and that the axial force coefficients recorded under
laminar boundary-layer conditions at several Reynolds numbers may be plotted
against the laminar parameter (the reciprocal of the Reynolds number to the one-half
power) and extrapolated to the ordinate axis to determine the inviscid-wave-drag
coefficient at the intercept.

Introduction

The vitally important performance parameters lift,
drag, and the range factor lift-drag ratio are oriented in
the wind axis system and may be determined directly
from mechanical or electronic force measuring devices
attached to test models exposed to natural or artificial
fluid flow. These performance parameters are usually
and more efficiently determined by measuring the more
basic load components—the normal force and axial
force, which are oriented in the body axis system, at each
angle of attack. The lift, drag, and lift-drag ratio are
calculated trigonometrically and put in coefficient form
by dividing by the reference conditions.

Of particular importance were the observations
reported in reference 1 that the experimental normal
force coefficients, at a constant attitude, were constant
with a variation of more than 2 orders of magnitude of
Reynolds number at a free-stream Mach numberM∞
of 8.00; reference 2 reports more than 1 order of magni-
tude variation atM∞ = 6.00 on the same body–wing
hypersonic cruise configuration. These data, recorded
under laminar, transitional, and turbulent boundary-layer
conditions, consisted of test runs at 65 different Reynolds
numbers atM∞ = 8.00 in 2 different facilities with both
hot-wall and cold-wall test models and 30 runs at
M∞ = 6.00 with a hot-wall test model.

If the normal force coefficients are constant with
Reynolds number, the determination of lift, drag, and
lift-drag ratio is simplified by at least 50 percent, as only
the axial force coefficients are left to be accurately
assessed with Reynolds number. The axial force coeffi-
cients of concept configurations can be estimated by a
number of analytic, empirical, and individual component
summation methods. Simple shapes having only bow

shocks lend themselves well to all methods. The drag of
configurations with wings, vertical surfaces, and/or inlets
that produce additional shocks downstream of the bow
shock introduce changes in dynamic pressure, and flow
angularity, that, short of future proven time-consuming
and expensive computational fluid dynamics (CFD) pro-
grams, cannot be estimated with the desired accuracy.
The axial force coefficients therefore encompass not only
the inviscid pressure drag but also all the viscous drag
contributions that are affected methodically and indelibly
by any variation in Reynolds number.

Blasius and others have established that all laminar
viscous parameters may be expressed as functions of
Reynolds number—to be exact, the reciprocal of
Reynolds number to the one-half power for values
greater than about 1000. All these laminar parameters—
the skin friction, the boundary-layer depth, and the
momentum, displacement, and energy thickness—are
used at various speed ranges with the appropriate temper-
atures to study laminar viscous aerodynamic drag. Ratios
of these various thicknesses, known as shape factors,
have been used successfully, in conjunction with surface
roughness, to predict transition and laminar separation
locations at lower speeds. Because all laminar viscous
parameters can be expressed as functions of the recipro-
cal of the Reynolds number to the one-half power

 it is logical to assume that any combination of
these parameters would also be a function of  and
to use this factor to predict viscous drag under laminar
conditions at higher or lower Reynolds numbers. A suc-
cessful attempt was made in reference 1 to predict the
inviscid axial force coefficient at very high Reynolds
numbers that approached infinity on a highly streamlined
body–wing concept by plotting the experimental axial
force coefficients versus the factor  and then
extrapolating these data to the ordinate axis. This

1/ Rl ,
1/ Rl

1/ Rl
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intercept value coincided with the inviscid calculated
result made with the hypersonic arbitrary-body aerody-
namic program (HABAP) of reference 3.

The present paper presents additional experimental
evidence that the normal force coefficients are constant
with Reynolds number and that the inviscid axial force
coefficients can be determined by the extrapolation pro-
cess. Experimental data on 25 configurations of 17 dif-
ferent models of both simple and complex geometry,
taken atM∞ = 6.00, 6.86, and 8.00 in 4 hypersonic test
facilities, are used. Aerodynamic calculations determined
by CFD are used where possible, supplemented by engi-
neering methods applied by hand and machine. Addi-
tional analysis of the data atM∞ = 8.00 of reference 1 and
M∞ = 6.00 of reference 2 are also included.

Symbols

A aspect ratio

b wing span

CA axial force coefficient,

CA,LE axial force coefficient at leading edge

CF average skin friction coefficient

CN normal force coefficient,

Cp pressure coefficient

stagnation pressure coefficient,

c wing chord

ccl centerline chord

cr root chord of delta or caret wing

d base diameter or disk diameter

FA axial force alongX-axis (positive
direction,−X)

Fb base pressure correction, (p∞ - pb) Sb

FN normal force alongZ-axis (positive
direction,−Z)

He effective test section height

l model length

M∞ free-stream Mach number

pb base pressure

pt,1 total pressure

pt,2 total pressure behind normal shock

p∞ free-stream pressure

q∞ free-stream dynamic pressure

Rl free-stream Reynolds number based on
maximum chord or body

Sb base area

Sp planform area

Sr reference area, varies with model

t maximum thickness

V total volume of model

nondimensional volume parameter

X,Z body axes

α angle of attack, deg

β angle of sideslip, deg, or flow expansion
angle, deg

γ ratio of specific heats, 1.4

δ flow deflection, deg, or boundary-layer
thickness

δE elevon deflection, deg

δH horizontal tail deflection, deg

δ* boundary-layer displacement thickness

θ cone half-angle (semivertex angle) or
wedge angle, deg (see fig. 2)

Λ sweep angle of wing leading edge, deg

laminar-flow parameter

turbulent-flow parameter

Model components:

B body

C cone

D delta

E elevon

H horizontal tail

I inlet

V vertical tail

W wing

Abbreviations:

BBMN blunt body modified Newtonian,
(Cp,max)st = Stagnation pressure
coefficient

CFD computational fluid dynamics

GASP General Aerodynamic Simulation
Program

HABAP Hypersonic Arbitrary-Body
Aerodynamic Program, Mark III

JPL HWT Jet Propulsion Laboratory Hypersonic
Wind Tunnel

FA Fb–

q∞Sr
-------------------

FN

q∞Sr
------------

Cp,max( )st
pt ,2/pt ,1 p∞/pt ,1–

γ /2M∞
2( ) p∞/pt ,1( )

----------------------------------------------

V
2/3

Sp
----------

1/ Rl
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JPL SWT Jet Propulsion Laboratory Supersonic
Wind Tunnel

Mach 8 VDT Langley Mach 8 Variable Density Tunnel
(known also as Langley 18-Inch Mach 8
Tunnel)

Mod. modified

New. Newtonian

PM Prandtl-Meyer

PNS parabolized Navier-Stokes

SBMN sharp body modified Newtonian,
Cp,max = γ + 1 = 2.4

TC tangent cone

TW tangent wedge

Presentation of Models and Data

The models and data are presented in the following figures:
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Apparatus and Test Conditions

Data measured in four different hypersonic facilities
were analyzed and are discussed in this paper. At each of
the four installations, the stagnation temperature was set
sufficiently high to avoid liquefaction and remain above
the supersaturated region, as defined by reference 4 for
all tests. All screw, dowel holes, and joints were filled
with dental plaster before each test was run.

Langley 11-Inch Hypersonic Tunnel

Most of the tests presented in this paper on right cir-
cular cones, rectangular wings, delta wings, and a caret
wing were conducted in the Mach number 6.86 test sec-
tion of the Langley 11-Inch Hypersonic Tunnel (now
decommissioned). The design of this facility may be
found in references 5 and 6. The contours of the two-
dimensional nozzle constructed of invar were calculated
by Ivan E. Beckwith and are presented in figure 13. Invar
was used to construct this nozzle to alleviate the deflec-
tion of the first minimum that occurred in the steel nozzle
of reference 6 because of differential heating of the noz-
zle blocks. The tunnel-wall boundary-layer thickness
and, therefore, the free-stream Mach number of this test
section were dependent upon the stagnation pressure.

For these tests, the stagnation pressure was varied
from about 74 to 515 psia, and the stagnation tempera-
ture varied from 1040°R to 1150°R. These conditions
resulted in an average free-stream Mach number
from 6.70 to 6.90 and a unit Reynolds number per foot
from 0.617× 106 to 4.29× 106, as well as an average
Reynolds number based on model length from 0.58× 106

to 5.35× 106. The absolute humidity was kept to less
than 1.9× 10−5 lb of water/lb of dry air for all tests. The
11-Inch Hypersonic Tunnel had predominantly laminar
flow conditions at all operating pressures; this was sub-
stantiated by tests where the transition on a sharp-edged

hollow cylinder was experimentally measured in this tun-
nel at Reynolds numbers as high as 5.7× 106 (ref. 7).
Similar tests on a sharp-edged flat plate showed transi-
tion began at a Reynolds number of about 2× 106 in
this tunnel (ref. 8). A private communication from
Pierce L. Lawing of the Langley Research Center, who
retested the flat plate of reference 8, indicates, however,
that his tests showed that, by meticulously cleaning the
tunnel walls and throat of dust particles and other debris
before each test, he could increase the transition
Reynolds number to about 5× 106, and conversely, by
intentionally adding roughness to the tunnel walls in the
form of minute glass beads, he could reduce the transi-
tion Reynolds number to values approaching the 2× 106

shown in reference 8. All models were tested on two-,
three-, or six-component strain-gauge balances. The size
of models for the 11-Inch Tunnel was determined by the
method described in appendix A.

Langley Mach 8 Variable-Density Tunnel

The Langley Mach 8 Variable-Density Tunnel
(VDT) (now decommissioned) consisted of an axially
symmetric nozzle with contoured walls, had an 18-in-
diameter test section, and operated on a blowdown cycle.
The tunnel-wall boundary-layer thickness, and therefore
the free-stream Mach number, were dependent upon the
stagnation pressure. For these tests, the stagnation pres-
sure was varied from about 128 to 2835 psia and the
stagnation temperature was varied from about 1135°R to
1480°R. These conditions resulted in an average free-
stream Mach number from 7.74 to 8.07 and a Reynolds
number based on fuselage length from 1.371× 106 to
27.084× 106 (0.636× 106 to 12.539× 106/ft). Dry air
was used for all tests to avoid any condensation effects.
The calibration of this tunnel for the present tests is dis-
cussed in reference 1. The model of an advanced blended
body-wing hypersonic cruise concept (fig. 2(g)), was
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tested in the Mach VDT on a sting-mounted, internal,
six-component, water-cooled strain-gauge balance. This
combination was injected into the hypersonic flow after
the blowdown cycle had begun and retracted before the
cycle was stopped. Tests were made at a fixed angle of
attack, and the final data were corrected for sting
deflection.

Calspan Hypersonic Shock Tunnel

The Calspan 96-Inch Hypersonic Shock Tunnel,
described in reference 9, employs a reflected shock to
process air to conditions suitable for supplying an axially
symmetric, convergent-divergent hypersonic nozzle. For
the tests discussed herein, the shock-processed air was
expanded through the contoured nozzle, which has inter-
changeable throats, to the desired test conditions at the
24-in. exit diameter. Test time varied with conditions up
to about 13 ms duration. For the shock-tunnel tests, the
stagnation pressure varied from about 337 to 18650 psia
(22.9 to 1269 atm), and stagnation temperature varied
from about 691°R to 3973°R (231°F to 3513°F) not only
to avoid liquefaction but also to tailor the wide range of
test Reynolds number to a Mach number of approxi-
mately 8 (varying only from 7.507 to 8.26). (These con-
ditions resulted in a Reynolds number based on fuselage
length from 0.527× 106 to 160.7× 106 (0.244× 106 to
74.4 × 106/ft).) Some of the higher stagnation tempera-
tures were used at the lower stagnation pressures to help
obtain the lower Reynolds numbers by increasing viscos-
ity and lowering the density. The free-stream Mach num-
ber was determined from pitot pressures measured for
each test run by means of piezoelectric crystal pressure
transducers mounted in the test section. The advanced
blended body–wing hypersonic cruise model was tested
in the Calspan Shock Tunnel on a three-component
strain-gauge balance (fig. 2(g)).

Langley 20-Inch Mach 6 Tunnel

The Langley 20-Inch Mach 6 Tunnel operates on a
blowdown cycle through a 2-D nozzle with a test section
20.5 in. high and 20 in. wide. Dry air was used for all
tests to avoid water condensation effects. Tests were
conducted at free-stream Mach numbers from 5.799 to
5.994, stagnation pressures from 34.3 to 525 psia, and
stagnation temperatures from about 784°R to 912°R.
These conditions resulted in an average free-stream
Reynolds number based on fuselage length
from 1.562 × 106 to 19.067× 106 (0.723 × 106 to
8.827× 106/ft) (ref. 10).

A six-component, water-cooled strain-gauge balance
was installed inside the advanced blended body–wing
hypersonic cruise model body and attached to the tunnel
variable-angle sting-support system (fig. 2(g)). Forces

and moments were measured through a range of angle of
attack from−1° to 8°.

Models and Tests

Photographs of all models presented in this report
are shown in figure 1. All models were fabricated from
metal, hollowed to decrease weight where practical, and
tested on multicomponent strain-gauge balances. For
most tests the angle of attack was set prior to each test
point in both the 11-Inch Hypersonic Tunnel and the
20-Inch Mach 6 Tunnel by projecting a point source of
light onto a lens-prism combination installed in the
model wall and reading the reflected image on a cali-
brated chart. Accuracy of±0.050° was possible with this
method. The exceptions to this hands-on procedure were
the tests for the advanced blended body–wing configura-
tion in the Mach 8 VDT and Hypersonic Shock Tunnel.
During these tests, the model was mounted on either a
six-component or three-component strain-gauge balance
in the test region at the prescribed angle of attack before
the test run; then the final angle was determined from
sting-bending calibrations and measured air loads. The
accuracy of this method is equal or superior to the light-
impingement method described previously. All data
reported herein were corrected to base pressure equal to
free-stream static pressure, and all tests were made with
free transition.

Cones

Data from three separate cone test programs (refs. 11
to 13) are presented in figure 3. Models were machined
from either stainless steel or aluminum alloys, as indi-
cated in figure 2. The smaller stainless steel models were
tested on a two-component external strain-gauge bal-
ance, and the larger aluminum models and the one large
stainless steel model were tested on six-component,
internal-external strain-gauge balances. The strain
gauges and the associated flexural beams are located out-
side the test model for external balances and housed in
protective covers to shield them from the hot air flow.
The internal-external balances had the axial force and
rolling-moment components externally housed from the
model; the remaining four components, consisting of
normal force, side force, pitching-moment, and yawing-
moment components, were mounted inside the model
with the moment center coinciding with the selected cen-
ter of gravity in the model. The reference area for the
cones is the base area.

Wings

The rectangular, delta, and caret wings were all
machined from aluminum alloy (figs. 2(b) to (d)), and
care was taken to maintain all leading edges as sharp as
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possible (refs. 14 and 15). These models were tested on a
three-component, external, water-cooled strain-gauge
balance. The reference area for the rectangular, delta, and
caret wings is the planform area.

Blended and Distinct Body–Wing Configurations

These complete airplane configurations (figs. 2(e)
and (f)), designed and tested for references 16 and 17,
were cast from aluminum with wooden pattern models.
Wing surfaces and balance cavities were machined and
bored after casting. Flow-through engine inlet cowls
were machined from stainless steel and attached to the
models with screws. Elevon deflections were facilitated
on the blended body–wing model by interchangeable
elevons that had machined angles and were attached by
screws. The horizontal tails of the distinct body–wing
model were rotated about small shafts machined on the
hinge line that extended into the fuselage side and were
held in place by set screws from the base of the model.
The reference area for the blended and distinct body–
wing configurations is the wing area including the fuse-
lage intercept.

Advanced Blended Body–Wing Test
Configuration

This advanced blended body–wing configuration
(fig. 2(g)) was designed primarily for tests at high
Reynolds numbers in the Calspan Shock Tunnel (refs. 1,
2, and 18) and was machined from a solid billet of
4130 steel because of the inherent high strength and
weldability of the steel. The model was hollowed out,
and a cover was welded on prior to final machining. This
model had leading-edge diameters and trailing-edge
heights of 0.006 in. The reference area for the advanced
blended body–wing configuration is the wing area
including the fuselage intercept.

Theoretical Methods

In keeping with the variety of different model types
studied in the present paper, a variety of theoretical
methods were used to predict the forces and viscous
effects encountered during the wind tunnel and shock
tunnel tests. Estimates were made by hand with a desk
calculator on the simple flat faceted wing models, the
HABAP (Hypersonic Arbitrary-Body Aerodynamic
Program, Mark III) (ref. 3) was used to provide engineer-
ing predictions on the more complex airplane configura-
tions, and the GASP (General Aerodynamic Simulation
Program) (refs. 19 to 22) was used to provide inviscid
and viscid CFD predictions for selected cones and wings.

Engineering Predictions

Inviscid forces were determined, where possible,
from tables calculated by CFD methods (i.e., the values
of CN and CA for cones at angles of attack below the
semivertex angle). (See refs. 23 to 25.) Forces on the 2-D
wedge wings, the three-dimensional (3-D) delta wings,
and the caret wing were determined by tangent-wedge–
Prandtl-Meyer (TW–PM) theory. The one exception was
the use of the tangent-cone–Prandtl Meyer (TC–PM)
theory on the very slim 85° swept delta wing. Hand cal-
culations required that the airstream surface of the con-
figuration under consideration be divided into panels and
that the local flow deflection angle be determined. From
this flow deflection angle, the local pressure coefficient
was determined from oblique shock charts or tables if in
compression or from PM charts or tables if in expansion.
These pressure coefficients were then summed with the
appropriate area ratios to determine the normal and axial
force coefficients. Hand calculations were greatly simpli-
fied by the use of cross plots of oblique shock and PM
expansion pressure coefficients versus Mach number and
flow deflection angle calculated from the table of refer-
ence 26 and cone pressure coefficients of references 23
to 25. The HABAP, of course, has these pressure coeffi-
cients stored in the computer program. The present in-
house HABAP has been modified to optionally use a
lookup table for cone pressure coefficients, instead of the
empirical equations of the original program, and the
option of limiting the expansion coefficients to a value
equal to  (ref. 27). Both options were used in the
present theoretical estimates. All calculations assumed
free-stream static pressure on the bases of models.

Modified Newtonian Theory

Blunt-Body Option

An estimation of the axial force contribution from
the bluntness of the model noses and leading edges was
made by the proven modified Newtonian theory, which
substitutes the maximum stagnation pressure coefficient
of the Mach number under study for the classic
Newtonian value of 2.0 and is known as the blunt-body
option (BBMN). ForM∞ = 6.86, (Cp,max)st is 1.823. Of
historical interest is that this concept, when first reported
by the author, was considered sensitive to the national
interest and was published as a classified NACA report
(ref. 28) in March 1954, declassified in 1956, and repub-
lished as unclassified in 1957 (ref. 29). The modified
Newtonian drag coefficient for a sphere atM∞ = 6.86 is
equal to (Cp,max)st/2 or 0.911; that of a cylinder normal to
the flow is equal to 2/3(Cp,max)st or 1.215. These con-
stants were used herein for the model nose and leading-
edge estimates, respectively, with the leading-edge
sweep taken into account.

1/M∞
2–
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Sharp-Body Option

By substitutingM∞ = ∞ into the oblique shock equa-
tions, the so-called sharp-body option to the Newtonian
theory (SBMN) was derived in reference 30, whereas
Cp,max was found to be (γ + 1) or 2.4. This option was
used herein on the faceted configurations for reference.

Skin Friction

The axial force contribution of laminar skin friction
for the cones and faceted wing models was made by use
of the Monaghan reference temperature method of refer-
ence 31, taking into account the ratio of wetted area to
reference area, the dynamic pressure increase across the
leading-edge shocks, and the variation of surface angu-
larity with the reference axis. Determination of the aver-
age skin friction by the Monaghan method takes into
account the local Mach number, static temperature and
pressure, and the model wall temperature and planform
effects. The skin friction on the cones used the well-
known Mangler transformation to modify flat-plate skin
friction to that applicable to conical bodies (ref. 32). No
induced effects were included in the final summation.

Computational Fluid Dynamics

CFD calculations were made with the GASP
(refs. 19 to 22), which solves the integral form of the 3-D
compressible Navier-Stokes equations. GASP uses a
cell-centered, finite-volume formulation with upwind-
biased spatial discretization.

The code is able to switch from solving the Navier-
Stokes equations in elliptic (or global iteration) mode to
the parabolized Navier-Stokes (PNS) equations in the
space marching mode. The code marches by iterating on
cross-flow planes to converge the solution plane by
plane. The Vigneron technique (ref. 22) is used to limit
the streamwise pressure gradient in the subsonic portion
of the boundary layer to avoid departure solutions. All
cases were marched taking advantage of the nature of the
problem in that signals cannot travel upstream in a super-
sonic flow field. All the solutions obtained in this paper
used either a no-slip, fixed-wall temperature or no-slip,
adiabatic boundary condition applied at the surface,
except for the infinite Reynolds number cases (inviscid),
which had tangency imposed at the surfaces.

The 2-D wedge, delta-wing, and caret-wing grids
were blocked. As an example of this blocking strategy,
imagine a cross section of the delta wing. Capture of the
flow around the wing required a total of four rectangular
grid blocks: two blocks directly above and below the
wing and two more blocks adjacent to these to capture
the flow outboard of the wingtip. Pairs of blocks could be
combined in a number of ways, such as combining the

two upper blocks into one, the two lower blocks, or the
two outboard blocks; but for simplicity of setup, the
blocks were kept separate. The blocks exchanged flow
information with neighboring blocks across their bound-
aries as the solution was marched downstream. The grid
densities were 65 by 65 by 65 for each block.

The grids were tailored to resolve viscous effects.
Grid points were clustered near the surface to resolve the
boundary layer and hence the skin friction. All the first
spacings off of the surfaces were set at 1× 10−4 in. The
axial spacings were clustered at the leading edge to
resolve the viscous-inviscid interaction that creates high
pressure and high skin friction values initially, but these
values decrease rapidly downstream. Spanwise cluster-
ing also captured the decrease in boundary-layer thick-
ness and the resulting increase in skin friction near
wingtips caused by edge effects.

To decrease convergence time without sacrificing
accuracy, all the grids started at a small distance down-
stream from the leading edge (on the order of 0.02 in.).
This procedure prevented one or more of the grid blocks
from becoming singular at the leading edge of the geom-
etry. For example, on the 3-D wedge, a grid block on the
side of the wedge collapses to a line if begun at the lead-
ing edge of the geometry. Convergence becomes very
slow near a singular edge, and the solution can be unsta-
ble because of the discontinuous spacing at the bound-
aries where the blocks exchange information with their
neighbors.

To ensure accuracy, a simple grid-convergence test
was performed. Each case was solved twice: once on the
fine grid, and again, on the coarse grid—every other
point in the fine grid was taken out in each direction,
which means the fine grid had 23 or 8 times as many
points as the coarse grid. Also, the spacing off the wall
was slightly more than halved from the coarse to the fine
grids. Almost all the cases had less than 1 percent differ-
ence in axial and normal force coefficients for the coarse
and fine grid results. (The exception was the caret wing
at 6° angle of attack, which showed less than 2 percent
difference.) A cross section of the trailing-edge grid for
all configurations is presented in figure 14.

Results and Discussion

The study of the invariance of normal force coeffi-
cient with Reynolds number under all viscous conditions
and the determination of the inviscid axial force, or wave
drag, under laminar-boundary-layer flow conditions con-
sisted of the analysis of data recorded on 17 separate
models. One configuration was tested at bothM∞ = 6.00
and 8.00, and 16 shapes were tested at aboutM∞ = 6.86
(refs. 1, 2, and 11 to 15), two of which had pitch-control
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deflections of+5° to −5° and of+5° to −15°. Two config-
urations were tested with and without engine inlet instal-
lation, and one was tested atβ = 0° andβ = −4°, for a
total of 26 test models or test conditions. Normal force
coefficients were available for all configurations and
axial force coefficients, with accurate base pressure
corrections and minimum scatter tested under laminar
conditions, were available for 10 of the models. For the
overall tests, the angle of attack varied from 0° to as high
as 30°, and the Reynolds number based on model length
varied from about 0.35× 106 to 161× 106.

Right Circular Cones

Normal Force

The normal force coefficients for sharp-nosed, right-
circular cones are presented in figures 3(a)–(d) at various
angles of attack andM∞ = 6.70 to 6.89. (See refs. 11
to 13). These data, recorded under laminar flow condi-
tions, are shown plotted against Reynolds number based
on model length. The normal force coefficientCN may
be observed to be constant with Reynolds number at each
angle of attack for each of the cone models that had
semivertex anglesθ of 5°, 10°, 20°, and 30°. It therefore
seems reasonable to assume that, if the normal force
coefficient does not vary with Reynolds number, it is not
significantly affected by viscous effects, which do vary
greatly with Reynolds number. Furthermore, under the
same conditions, inviscid calculations should give good
estimates. Inviscid normal force values from refer-
ences 23 to 25 are shown for some of the lower angles of
attack for all four cones (fig. 3) and verify that the invis-
cid values ofCN provide good predictions of the viscid
experimental normal force coefficients on cones. To fur-
ther examine this hypothesis and determine theoretical
axial force coefficients, limited CFD calculations were
made with the GASP code of references 19 to 22 on the
cones withθ = 5° and 10° at angles of attack up to 10°
under both viscid and inviscid flow conditions. The grid
used for these calculations, discussed in the section
“Theoretical Methods,” is shown in figure 14. The results
of the calculations presented in figures 3(a) and (b) show
that the viscid and inviscidCN values were within 1 per-
cent of each other, and the CFD methods of references 23
to 25 give identical inviscid values. This parabolized
Navier-Stokes code is not necessarily limited to calcula-
tions at angles of attack on cones to those angles equal to
or less than the cone half-angle, but by selecting an angle
of attack of 10°, relatively high pressures were encoun-
tered for summation and expensive machine time was
conserved. Additional PNS calculations on a right-angle
circular cone θ = 10° with and correlation with
experimental results atM∞ = 7.95 may be found in
reference 33. Therefore the conclusions are that the
experimental and CFD-calculated normal force coeffi-

cients for right-circular cones with half-angles of 5° to
30° at any given angle of attack and Mach number are
constant with Reynolds number and that inviscid calcula-
tions give excellent predictions of the parameter.

Axial Force

The determination of inviscid axial force coefficient
CA was made by plotting the experimental values at con-
stant angles of attack against the reciprocal of the square
root of the Reynolds number (i.e.,  and fairing the
data to the ordinate axis. This intercept is then a measure
of the axial force at a very high Reynolds number that
approaches infinity and, therefore, is an estimate of the
inviscid axial force coefficient. Note that this straight-
line extrapolation of axial force coefficients is valid only
for data recorded under laminar-flow boundary-layer
conditions. The data presented in figures 3(a) and (b) for
the cones withθ = 5° and 10°, recorded atM∞ = 6.86
under laminar-flow conditions, were faired to the ordi-
nate axis and compared with inviscid coefficients from
references 23 to 25; the agreement with the inviscid the-
ory was excellent. The results of the use of the GASP
CFD code to calculate the axial force coefficientCA for
the cones withθ = 5° and 10° are presented in fig-
ures 3(a) and (b). Not only did the inviscid values, also
referred to as “Euler values,” at various angles of attack
correlate precisely with the calculations of references 23,
24, and 25 but also the viscous values at different Rey-
nolds numbers plotted on a straight line extrapolated
back to the ordinate to the inviscid value when plotted
against the laminar boundary-layer parameter
The conclusion may be made that accurate estimates of
the inviscid axial force coefficients for cones at a given
angle of attack and constant Mach number may be
obtained by extrapolation of laminar experimental data
by using the parameter  The study of cone drag in
reference 34 atM∞ = 10 and 14 provides additional data
to support this conclusion.

Two-Dimensional Wedge Wings

Normal Force

To further study the normal force coefficients invari-
ance with Reynolds number, four 2-D wedge wings that
were tested atM∞ = 6.86 (refs. 14 and 15) were consid-
ered. These wings had aspect ratios of 0.35, 1.07, and 3.0
and were tested at two different Reynolds numbers
(fig. 4). Two wings with aspect ratio 1.07 had thickness
ratios of 0.116 and 0.234. The normal force coefficient
data from all these wings were constant with Reynolds
number through the relatively wide change in aspect ratio
and the variation in magnitude of the tip effects. Inviscid
estimates were made by the TW theory with the oblique-
shock and PM expansion tables of reference 26 for all

1/ Rl )

1/ Rl .

1/ Rl .
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configurations. Corrections for pressure decreases near
the tip were accounted for by use of linear theory based
on free-stream Mach angle, as presented in reference 35.
More rigorous calculations were made for the 2-D wing
model W1, which had an aspect ratio of 0.35 when the
GASP code of references 19 to 22 was used. This wing
would be expected to have the greatest tip losses and thus
be a more exacting test of the CFD code. The theoretical
predictions by the TW–PM theory were good, particu-
larly at the lower angles of attack and for the models of
higher aspect ratio where the tip effects were reduced.
An estimation of the effect ofCF of the triangular sides
of the models onCN was made and found to be negligi-
ble. SuperiorCN predictions were obtained from the
GASP CFD program, particularly at the highest angle of
attack of 14°. The trailing edge of the input grid dis-
cussed in the section “Theoretical Methods” may be seen
in figure 14. Inviscid values ofCN were unexpectedly
slightly higher than the viscid calculations. Oil flows on
wing W4 are shown in figure 7(a), taken at an angle of
attack of 9°. These pictures show a slight outflow near
the tips on the bottom and inflow on the top view of the
wing, as would be expected; no flow separation or vortic-
ity can be observed. At the three angles of attack studied
up to α =14°, the values ofCN were constant with
Reynolds number. It may be concluded that the normal
force coefficients for 2-D wedges of various aspect ratios
are constant with Reynolds number for any given angular
attitude and Mach number, both experimentally and
theoretically.

Axial Force

The inviscid axial force coefficients for the wedge
models were estimated by the extrapolation process used
for the cones and are presented in figures 4(a)–(c). The
results were excellent, particularly for the model having
an aspect ratio of 3, where the scatter of the experimental
data was small and the correlation with the theoretical
estimates was enhanced by the smaller tip losses. Invis-
cid estimates of axial force by the CFD program
(fig. 4(a)) were of slightly higher magnitude than those
by the TW–PM method. As observed on the conical
models, the viscid calculations extrapolated to the invis-
cid values. For 2-D wedge wings, it may be concluded
that inviscid axial force coefficients may be estimated
with confidence by the extrapolation of laminar data with
the parameter

Three-Dimensional Delta Wings

Normal Force

Experimental data taken atM∞ ≈ 6.86 and at five dif-
ferent Reynolds numbers on flat-bottom rooftop delta
wings (ref. 14) are presented in figures 5(a)–(e). These

delta wings had leading-edge sweep angles that varied
from 75° to 85°, thickness ratios of 0.088 and 0.176 that
corresponded to streamwise wedge angles of 5° and 10°,
and aspect ratios that varied from 0.35 to 1.07 because of
the leading-edge sweep changes. The normal force
coefficient was constant at any given angle of attack
through a nearly sevenfold change in Reynolds number
for all five delta wing models. Theoretical estimates were
made by three different methods: first, the straightfor-
ward TW–PM; second, TC–PM methods; and third, the
GASP.

TW–PM estimates were made with the equations of
reference 36 to determine the local flow deflection angles
and the tables of reference 26 to obtain the corresponding
oblique-shock and PM expansion pressure coefficients.
The calculations were summed up to produce the normal
force coefficients shown in figure 5 and, subsequently,
the axial force coefficients labeled TW–PM. This simpli-
fied theoretical approach gave acceptable estimates of
the normal force coefficients for the four delta wings
having leading-edge sweep angles of 75° and 80°
(figs. 5(a)–(d)), with the trend of a slight underprediction
at low angles of attack and an overestimation at the
higher angles. The exception was the estimates made for
the 85° swept delta wing, model D5, with its inherent
high degree of three dimensionality, the TW–PM theory
grossly overpredicted the normal force at both low and
high angles of attack. Greatly improved estimates were
possible when the pressure coefficients derived for 3-D
conical bodies (refs. 23, 24, and 25) were substituted for
the oblique shock values of reference 26. Normal force
coefficients obtained in this manner, labeled “TC–PM”
in figure 5(e), show acceptable estimates at all angles of
attack. This overprediction by the TW–PM theory is in
contrast to the underprediction ofCN for the 2-D rectan-
gular wing, model W1, which also had an aspect ratio of
0.35 and a common  of 0.210.

The more exact calculations made with the GASP
CFD program, shown by dashed lines in figure 5(a), pro-
vided excellent predictions of normal force coefficients
with angle of attack and further proof that the coefficient
is constant with Reynolds number. This program also
showed that there were but minimal viscous effects on
normal force for the thin delta wing. The GASP input
grid used for delta wing model D1 is discussed in the
section “Theoretical Methods” and shown in figure 14.
Oil flows on wing models D1 and D5 are shown in fig-
ures 7(b) and (c). Slight inflow at the leading edges can
be seen on model D1 atα = 7.0°. The oil flow on the 85°
swept wing model D5 was nearly conical even at the rel-
atively high angle of attack of 8.5°. Therefore, the use of
the TC–PM theory was justified for these engineering
estimates. From the study of the experimental data and
the theoretical results, however, the normal force
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coefficients are constant with Reynolds number for delta
planform 3-D bodies and that simple TW or TC pressure
coefficients in conjunction with PM expansion coeffi-
cients may provide acceptable estimates of the normal
force coefficients. More exact results were shown to be
possible with the GASP CFD program.

Axial Force

The axial force coefficients were available for delta
wing models D1 to D4 and are shown plotted against the
laminar parameter  in figures 5(a)–(d), along with
estimates of the inviscid values calculated by the meth-
ods described in the previous section “Normal Force.”
For all models, particularly for the two models that have
high thickness ratios (figs. 5(c) and (d)), higher drag, and
less scatter, the experimental data that faired to the invis-
cid values provide further evidence that this extrapola-
tion method is sound. Inviscid calculations on model D1
(fig. 5(a)) with either TW–PM or GASP CFD methods
gave nearly the same results. Experimental data were
incrementally higher than the GASP viscid results and
could not be accounted for, although errors in experi-
mental base-pressure measurements are suspect. The
GASP computations, however, further confirmed the
second prime contention of this paper, which was that an
extrapolation of the laminar viscid axial force coeffi-
cients to very high Reynolds numbers plotted against the
laminar flow parameter  is rigorously valid from
theoretical considerations.

Caret Wing

Normal Force

The caret model (fig. 2(d)) was designed with geo-
metric characteristics similar to the 2-D rectangular wing
model W4 (figs. 2(b) and 4(d)) and delta wing model D1
(figs. 2(c) and 5(a)). The three wings had a common
aspect ratio of 1.07, and the leading-edge sweep was 75°
for the caret and the delta wings. The volume ratio

 was held constant for the delta and rectangular
wings; thus, the thickness ratio varied. The thickness
ratio was held constant at 0.1163 for the caret wing to
match the rectangular 2-D wing, and the negative dihe-
dral angle was set to coincide with the leading-edge
shock observed on the rectangular wing (fig. 4(d)) at its
maximum lift-drag ratio, which occurred at an angle of
attack of about 9° (ref. 14). Thus, the volume ratio geo-
metrically had to vary when the thickness ratio was held
constant. (See table and sketch in fig. 2(d).) Figure 6
shows that, as with the simpler shapes, the normal force
coefficient is constant with Reynolds number at angles of
attack up to 6°. There appears to be a slight trend for the
coefficient to increase with Reynolds number at the
higher angles of attack, a trend also exhibited by the

rectangular wing model W4 but not shown for any of the
previous 11 simple shapes or the 3 subsequent more
complicated aircraft configurations. Prediction of the
normal force coefficients for the caret wing by the simple
TW–PM theory are shown to be inadequate at all test
angles of attack; this indicates that the flow, on the bot-
tom surface particularly, is more complex than that of the
other simple wings reported herein. Four angles of attack
were run with the GASP CFD code with mixed results;
CN values decreased slightly with Reynolds number,
which is contradictory to the experimental data and prob-
ably an indication of inadequate modeling of flows of the
more 3-D shapes. The oil flow study shown in figure
7(d), however, indicates that the flow was orderly on
both the top and bottom surfaces with a slight inflow just
aft of the leading edges at the test angle of attack of 7.5°.
The GASP input grid for the caret wing, discussed in
general in the section “Theoretical Methods,” is shown in
figure 14 in abbreviated form. The conclusion may be
made that the normal force coefficient for a simple caret
wing is constant with Reynolds number.

Axial Force

The axial force coefficients were available for the
lower angles of attack and are presented in figure 6. This
somewhat more complicated aerodynamic shape exhib-
ited the same laminar characteristic of extrapolating to
the inviscid value at very high Reynolds numbers. These
inviscid values were calculated by the same methods,
TW–PM and GASP CFD, as were those of the delta
wings described previously. The inviscid axial force
coefficient for this unique configuration consists only of
the pressure forces on the top surface because the bottom
surface is parallel to the oncoming flow. The present
experimental data were corrected for base pressure. Vis-
cous axial forces therefore consist of pressure forces on
the top surface and skin friction on both the top and bot-
tom surfaces. These data thus provide additional evi-
dence that the conclusion the extrapolation of low
Reynolds number laminar data to high Reynolds num-
bers by the parameter  is valid. The inviscid axial
force coefficients determined by the GASP CFD pro-
gram were slightly lower than those determined by the
TW–PM theory, a trend also shown for the delta wing
(fig. 5(a)).

Viscous CFD and Engineering Estimates of Axial
Force Coefficients atα = 0°

Figure 8 was prepared to summarize and compare
the viscous CFD and engineering axial force theories on
the basic research models at an angle of attack of 0°. The
methods of determining the pressure loadings and vis-
cous forces were discussed in the section “Theoretical
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Methods.” Although estimates of the nose and leading-
edge drag made by the modified Newtonian method of
references 28 and 29 were not included in the CFD or
engineering calculations where sharpness was assumed,
they are included for each configuration for the maxi-
mum diameters considered possible. For reference, the
sharp-body modified Newtonian theory is shown for the
wing models where theCp,max = γ + 1 (ref. 30).

A cursory study of figure 8 gives the impression,
with the exception of the axial force predictions for the
10° cone, that the present methods are inadequate in pro-
viding accurate axial force coefficients on simple
research configurations atM∞ ≈ 7.00 under laminar flow
conditions. If performance estimates were desired for
flight under these conditions, the impression would be
correct. However, the fact that the inviscid estimates of
the GASP procedures for the cones were identical with
those of references 23 to 25 and the engineering inviscid
estimates for the faceted wings were close to those of
GASP is possibly more important. Under viscid condi-
tions, the GASP estimates that included the viscous inter-
action effects (i.e., the change in the surface pressure
caused by the boundary-layer buildup and the change in
the skin friction caused by this pressure change) were
higher than the TW–PM+ CF estimates, which did not
account for these viscous effects and was to be expected.
Exact modeling of the flow is further complicated by the
knowledge that the laminar skin friction increases with
decreasing model wall temperature and the boundary-
layer displacement thickness decreases with decreasing
wall temperature (ref. 1). The assumption that the models
had a constant wall temperature during the blowdown
tunnel tests was incorrect, but the exact wall temperature
was unknown, as was the temperature distribution. The
regions near the model leading edges and the nose were
quite possibly near the adiabatic wall temperature during
the tests; these regions are where a large portion of the
viscous interaction takes place.

The multiple calculations made by the GASP CFD
program at various Reynolds numbers for each test
model are shown to plot in a straight line that extrapo-
lates back to the ordinate axis to intercept the inviscid or
Euler value to give proof that the initial postulation,
based on experimental data, was correct. This extrapola-
tion provides further validation of the initial introductory
premise that all the laminar viscous parameters and any
combination of them may be expressed as functions of
the reciprocal of the Reynolds number to the one-half
power

Hypersonic Cruise Configurations

Thus far, the present paper has presented only exper-
imental data and theoretical estimates on relatively sim-

ple aerodynamic shapes that had simple bow shocks and
no appendages downstream of the nose or leading edge
to further disturb the flow. This paper now addresses the
experimental results from three hypersonic cruise config-
urations atM∞ = 6.00, 6.86, and 8.00.

Blended Body–Wing Configuration

The first blended body–wing transport airplane con-
figuration shown in figure 2(e) was conceived during a
NASA-Convair trade-off study of two hypersonic cruise
configurations discussed in references 16 and 17 and
tested atM∞ = 6.86, Reynolds numbers based on body
length from 1.36× 106 to 4.36 × 106, and angles of
attack from 0° to 12°. The normal force data from these
tests are presented in figure 9 for the complete
configuration—body, blended wing with elevons, verti-
cal tail, and scramjet engine inlet cowl—at elevon
deflections from 0° to −15° and with and without engine
inlet cowl atδe = 0°. The data for the complete configu-
ration, BWEVI, were taken at four Reynolds numbers
and for the configuration with elevon deflection and
without inlet, BWEV, were taken at only the two extreme
Reynolds numbers. The normal force coefficient is con-
stant with Reynolds number at each angle of attack for
the complete configuration (fig. 9(a)) and for the four
geometric variations in figures 9(b) and (e). Of interest is
the relatively low control power of the elevons, that is,
the ability of the elevons to produceCN with deflection,
particularly at low angles of attack even though they
encompassed about 10.2 percent of the reference area or,
more importantly, about 14.4 percent of the wing outside
the body (ref. 37). Although the addition of the engine
inlet and/or the deflection of the elevon controls do affect
the magnitude of the normal force coefficients as
expected, they do not change their invariance with
Reynolds number. For a relatively clean airplane config-
uration with various pitch control deflections, the normal
force coefficients are constant with Reynolds numbers at
a given attitude even thoughM∞  varied from 6.76 to 6.89
at the lowest to the highest test Reynolds number.

Distinct Body–Wing–Tail Configuration

The distinct body-wing airplane configuration
shown in figure 2(f) was the second design conceived
during the NASA-Convair trade-off study of refer-
ences 16 and 17. This complete configuration consists of
the body, wing with ailerons and flaps, horizontal and
vertical tails, and scramjet engine inlet cowl. The normal
force coefficients atα = 0° to 12° are presented in
figure 10. The tests were conducted at horizontal tail
deflections of−5°, 0°, and +5°. Tests were made with
and without engine inlet cowl, atδH = 0° andβ = −5°.
The Reynolds numbers based on fuselage length varied
from about 1.66× 106 to 5.35 × 106. Four different

1/ Rl .
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Reynolds numbers were used for the complete configura-
tion, BWHVI, at δH = 0° and 5°, and the two extreme
Reynolds numbers were used for other configuration
variables. The normal force coefficient for this distinct
body–wing airplane configuration was constant with
variations of Reynolds number for all tests.

Advanced Blended Body–Wing Configuration
Tested at M∞ ≈ 8.00

Normal force.Our last example test shape is a
highly blended body–wing design (fig. 2(g)) derived
from the previously discussed blended body–wing con-
figuration designed during the trade-off studies of refer-
ences 16 and 17. This blended body–wing configuration
had a gross volume similar to the configurations shown
in figures 2(e) and (f) but had revised elliptical fuel tanks
with an eccentricity of about 2; thus, this resulted in a
flatter fuselage. Tests were made without vertical tail and
engine cowl. More details of the design philosophy can
be found in reference 1. Although all these basic data for
the tests on this model atM∞ ≈ 8.00 were presented in
reference 1, only those data atα = 3° were examined in
detail.

The present paper examines all the data at all angles
of attack up toα = 6° from the Langley Mach 8 VDT and
the Calspan Shock Tunnel. To obtain data at whole
angles of attack, faired curves were used to determine
some points. Figure 11(a) presents the normal force coef-
ficients versus Reynolds number based on the theoretical
length that is shown in figure 2(g) as dashed lines. Note
that the Calspan Shock Tunnel data extended from a low
Reynolds number of about 0.53× 106 to a high of
161.0× 106; the preliminary results were presented in
reference 18. The data from the Mach 8 VDT were taken
at Rl ≈ 1.51× 106 to 27.1× 106. Also, included in fig-
ure 11(a) are calculations made with TC–TW—PM the-
ory and the Mark III Hypersonic Arbitrary-Body
Aerodynamics Program of references 3 and 1.Two inde-
pendent calculations were made because of the different
model wall temperatures, which greatly affect the axial
force, and the slightly different Mach numbers in the
shock tunnel and the blowdown facility, which affect
both the normal and axial forces. Because of the short
run times, up to 13 ms, the model in the shock tunnel
remained at approximately room temperature, whereas
the model in the blowdown tunnel was exposed to the hot
air (650°F to 830°F) for about 30 s and acquired a wall
temperature of as much as 400°F.

As mentioned previously, the throat geometry was
varied along with the stagnation conditions to provide the
wide range of test Reynolds number with a minimum
variation of Mach number in the Calspan Shock Tunnel.
The Mach number varied approximately logarithmically

with stagnation pressure from about 7.76 to 8.07 in the
Mach 8 VDT. Primarily the variation in Mach number
with test Reynolds number, which was accounted for in
the calculations, made the difference in the normal force
coefficients between the two test facilities presented in
figure 11(a). The small increase in Mach number
accounts for the slight decrease in both the experimental
and the calculated normal force coefficients with
Reynolds number. This variation with Mach number may
be observed in plots of the inviscidCN on simple flat
plates with angle of attack and/or with theCp on cones
with cone angle. (See appendix B.) The trend indicates
that the downward slope increases, that is, the rate of
change of normal force coefficient decrease with Mach
number increases with increasing flow deflection angle.

A study of figure 11(a) shows that the experimental
normal force coefficients were nearly constant with
2.25 orders of magnitude variation in Reynolds number.
These data from both facilities were recorded with natu-
ral transition under low Reynolds number, laminar
boundary-layer conditions and extended up through tran-
sition to high Reynolds number, turbulent conditions.
The highest Reynolds number recorded in the shock tun-
nel of about 161× 106 is representative of a 300-ft-long
vehicle traveling atM∞ = 8.00 at an altitude of about
109000 ft. It appears the engineering calculations made
by the HABAP predicted well the unchanging normal
force coefficient with Reynolds number, but this code
underpredicted the coefficients at the higher angles of
attack. Therefore, the normal force coefficients of this
streamlined body–wing configuration were constant with
Reynolds number.

Axial force. The axial force coefficients for the
advanced blended body–wing configuration at a nominal
Mach number of 8 are presented in figure 11(b) from
both the Langley Mach 8 blowdown tunnel and the
Calspan Shock Tunnel. These data are plotted against the
laminar parameter  in the left plot and a turbulent
parameter  in the right plot for the various test
angles of attack. The difference in the magnitudes of the
data between the Langley and Calspan facilities is caused
by the large variation in stagnation temperature and the
wide variation in model wall temperatures between the
two tunnels (ref. 1). These variations resulted in ratios of
model wall to stagnation temperature of above 0.64 for
the Mach 8 VDT and about 0.16 for the Calspan Shock
Tunnel. The higher wall temperature ratio of the model
in the VDT along with the lower static temperature
resulted in higher basic skin friction, a thicker boundary
layer, greater induced pressures, and a greater increment
of change in skin friction caused by these surface pres-
sure changes than occurred on the same model with a
cold wall in the Calspan Shock Tunnel.
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These variations of axial force coefficients between
the two test facilities were discussed at length in refer-
ence 1, but it is important to note that the identical con-
figuration can have different total axial force coefficients
at the same Reynolds number and Mach number because
of the different wall temperatures of the model in differ-
ent test regimes. The data at low Reynolds number
(higher values of  were shown to have been eas-
ily extrapolated to the inviscid axial-force value deter-
mined by the HABAP of reference 3. These inviscid
values of axial force coefficient include the pressure drag
from the HABAP calculations, the axial force caused by
the rounded leading edges of the wings and the nose of
the body, and a wing trailing-edge base pressure coeffi-
cient of  (ref. 27). The inviscid axial force coeffi-
cient may be determined for this advanced blended
body–wing configuration by extrapolation of laminar-
flow viscous data to very high Reynolds number with the
parameter  Once the inviscid axial force coeffi-
cients have been determined from laminar experimental
results, the turbulent parameter  may be deter-
mined as described in reference 1. The right plot of fig-
ure 11(b) shows the same data plotted against this
turbulent parameter. The value of the root, 7 in this case,
may not apply to all configurations because of different
component geometry and different local Reynolds num-
bers. Without laminar data, with the known root of 2,
determination of the inviscid axial force coefficient
would be highly speculative. The present turbulent data
obtained at the higher Reynolds numbers (lower values
of  are shown to readily extrapolate to the inviscid
value determined from the laminar results. Again, the
mixed-flow region and the laminar data are faired with
dashed lines. The intersection of the solid and dashed
lines represents a theoretical point of instant transition,
but it is plotted at the same Reynolds number in both the
laminar and turbulent plots for consistency and study.
The inviscid axial force coefficient or wave drag may be
determined for a highly streamlined body–wing concept
by extrapolating the laminar axial force coefficients to
the ordinate by using the laminar parameter  as the
abscissa.

Advanced Blended Body–Wing Configuration
Tested at M∞ ≈ 6.00

The advanced blended body–wing configuration was
also tested in the Langley 20-Inch Mach 6 Tunnel and the
results were reported in reference 2. The normal force
coefficients have been replotted against Reynolds num-
ber based on the theoretical length of the model (shown
in fig. 2(g)) in figure 12 at angles of attack up to 8°. For
these tests, the Mach number varied from about 5.799 to
5.994 through the test Reynolds number range of about

1.563 × 106 to 18.985× 106. In reference 2, the tests
were made under turbulent boundary-layer conditions.
These data are shown along with TC–TW—theory
applied with the HABAP of reference 3. The TC-TW
theory predicts the normal force coefficients adequately
at low angles of attack but tends to overpredict at the
higher angles. Other than the slight decrease of the coef-
ficients with the slight increase of Mach number, which
is more pronounced as the angle of attack increases (dis-
cussed in appendix B), the normal force coefficients are
constant with the variation of more than 1 order of mag-
nitude of Reynolds number under turbulent boundary-
layer conditions. The normal force coefficients of a
highly blended body–wing configuration atM∞ = 6.00
are constant with Reynolds number.

Additional experimental results atM∞ = 0.36, 1.50,
2.00, 2.36, 2.86, and 6.00 on a similar aluminum config-
uration that has a vertical tail, engine inlet cowl, and vari-
able elevon deflections may be found in reference 38
for Rl = 9.4 × 106 for M∞ = 0.36; Rl = 6.67× 106 for
M∞ = 1.50, 2.00, 2.36, and 2.86; andRl = 21.6× 106 for
M∞ = 6.00.

Space Shuttle Orbiter

Of significance are the experimental wind tunnel and
flight data reported in reference 39 with variations of
Mach numbers and Reynolds number on the Space
Shuttle orbiter with body flap deflections of 0° and 16°
and angles of attack up to 45°. These data show that the
normal force coefficients were constant with Reynolds
number atM∞ = 6.00 andM∞ ≈ 10.00 in the wind tunnel
and, more importantly, in flight. This result indicates that
the real gas effects occurring in flight do not alter the
conclusion of the constancy ofCN with Reynolds num-
ber. These data also show that normal force data
recorded in a helium tunnel atM∞ = 18 were constant
with Reynolds number and varied little from data mea-
sured during flight.

Conclusions

An analysis of experimental data performed with
current computational fluid dynamics (CFD) and engi-
neering theoretical methods of 25 configurations varying
from simple conical shapes and varying slab-sided wings
to complex complete configurations tested at free-stream
Mach numbersM∞ of about 6.00, 7.00, and 8.00, in
4 distinctly different hypersonic facilities, through a
range of Reynolds number based on body lengthRl
from 0.348× 106 to 160.7× 106 leads to the following
conclusions:

1. The normal force coefficientCN is constant with
Reynolds number for a given hypersonic Mach number
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and constant angles of attack and sideslip under com-
bined laminar, transitional, and turbulent boundary-layer
conditions for both simple and complex configurations.

2. The results of CFD predictions on five simple
aerodynamic shapes confirm that the normal force
coefficient of a given configuration is constant with
Reynolds number at a fixed angular attitude and Mach
number.

3. Because of the invariance of normal force coeffi-
cient with Reynolds number, the inviscidCN (very high
Reynolds number) is an excellent estimate of the viscid
values of normal force coefficient.

4. The wave drag or inviscid axial force coefficient
CA may be determined from laminar experimental data
recorded at various Reynolds numbers by extrapolation
and utilization of the laminar parameter  thus,
tests of new hypersonic configurations would be desir-
able, if not mandatory, under all laminar boundary-layer
conditions so that possible comparisons could be made
with Euler CFD computations.

5. The results of CFD studies confirm that the axial
force coefficients plotted against the laminar parameter

 will extrapolate as straight lines back to the Euler
or inviscid values on the ordinate axes.

6. The present General Aerodynamic Simulation
Program (GASP) CFD program provided identical invis-
cid axial and normal force coefficients as published in
the past analytical studies of Kopal, Sims, and Jones

(MIT Tech. Rep. 1, NASA SP-3004, and AGARD-
AG-137) on right circular cones.

7. The viscid axial force coefficients provided by the
GASP CFD program under laminar conditions were
excellent for the cone with semivertex angle of 10° at
M∞ = 6.86 but were underpredicted for all other configu-
rations at all Reynolds numbers.

8. When both laminar and turbulent experimental
data are available on the same configuration, it is possi-
ble that both may be extrapolated to very high Reynolds
numbers.

9. The Mark III Hypersonic Arbitrary-Body Aero-
dynamics Program with present Langley modifications
provided excellent inviscid axial and normal force coeffi-
cients for a hypersonic blended body–wing concept.

10. It is unknown if the invariance ofCN with
Reynolds number and the ability to extrapolateCA to
very high Reynolds number with the laminar parameter

 extend to lower supersonic Mach numbers.

11.Within the accuracy of the experimental data no
difference between data recorded on steel models and
data recorded on aluminum models was discernible.

NASA Langley Research Center
Hampton, VA 23681-2199
October 21, 1997
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Appendix A

Wind Tunnel Model Size Determination

A semiempirical method was developed in the
Langley 11-Inch Hypersonic Tunnel to determine the
size of a test model that would ensure tunnel starting and
running. This method consisted of the determination of
the largest circular disk, mounted perpendicular to the
flow, that would allow the tunnel to start and run with a
good wake, a clear shock pattern downstream of the disk,
and no nozzle roof or floor flow separation. A disk with
diameter of 2.865 in. would run atM∞ = 6.86 and a
Reynolds number based on disk diameter of 0.447× 106,
and a disk with diameter of 2.50 in. would run at
M∞ = 9.60 and a Reynolds number of 0.20× 106. Force
measurements were made during the experiments, and
the disk drag was determined in pounds. The selection of
model size was then made by estimating the anticipated
drag, that force parallel to the flow, at the highest desired
angle of attack of the new model and sizing it to not
exceed that of the test circular disk. In some instances,
the newly sized model might extend into the boundary
layer on the ceiling or floor of the test section, then the
length or the angle of attack would have to be reduced.
Several attempts were made to correlate these data with
other supersonic and hypersonic facilities. One early
effort divided the test disk diameter by the test section
height minus 1 boundary-layer thickness; therefore,δ* ,
the boundary-layer displacement thickness, was assumed
to be 0.5δ, the total boundary-layer thickness, and the

boundary layer was assumed to be of constant thickness
on all test walls. These assumptions, of course, are not
true particularly for square or rectangular test sections. A
better correlation parameter was found to be the height of
the effective test section flow determined by using the
nozzle first minimum area and the calibrated test Mach
number. The effective test section cross-sectional area
may be obtained from the compressible flow tables. The
disk diameter was then divided by the square root of this
effective test section area for rectangular cross-section
test sections or by the diameter of the circle having the
effective cross section area for circular test sections. Fig-
ure 15 shows results of this correlation for the 11-Inch
Tunnel and other Langley and Jet Propulsion Laboratory
facilities. This figure shows the ratio of disk diameterd
to the effective test section flow heightHe versus cali-
brated free-stream Mach number, with the Langley val-
ues beingd/He ≈ 0.31. The JPL values of reference 40
are somewhat lower, probably because of strut and sting
size and geometry. All models discussed in the present
report were sized by using these criteria except the
advanced blended body–wing configuration tested at
M∞ = 6.00 and 8.00. Inviscid theory calculations were
made by the method presented in reference 41. Larger
disks might be expected for higher Reynolds numbers
and/or smaller support structures.

The difference between the effective test section area
and the geometric area is the absolute displacement
boundary-layer area and, if distributed evenly over the
walls of the test section, would be an estimate of the
average boundary-layer displacement thicknessδ*.
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Appendix B

Rate of Change of Pressure Forces on Flat
Plates and Cones With M∞ and Flow
Deflection

The relationship of pressure forces on simple flat
surfaces and conical bodies is fundamental to the under-
standing of the normal force on multisurface models and
complex models of full-scale aircraft configurations. A
cross plot of these relationships is presented in figures 16
and 17. Figure 16 shows the normal force (i.e., the sum
of pressure forces on both bottom and top surfaces) in
coefficient form of an infinite-span flat wing at hyper-
sonic Mach numbers from 5.00 to 9.00 and at angles of
attack up to 10° from the tables of reference 26. Shown
also are variations of surface pressure coefficients on
right circular cones atα = 0° for cone semivertex angles
up to 14° with Mach number (refs. 23 to 25). Figure 17

presents a breakdown of the pressure coefficients on the
windward or compression and leeward or expansion sur-
faces of the flat wing of figure 16. In each figure, the
same phenomenon may be observed (i.e., as the Mach
number increases,CN and Cp decrease with Mach num-
ber). Furthermore, this decrease with Mach numbers is
exacerbated with increased flow compression or expan-
sion that occurs with increased angle of attack.

This change in pressure forces provides a ready
explanation as to why the normal force coefficient
showed a slight decrease with increasing Reynolds num-
ber when all tests were made in the same test facility.
When the Reynolds number is increased in a given wind
tunnel, the tunnel wall boundary layer thins and the aver-
age free-stream Mach number increases; small decreases
in normal force coefficient follow. As previously noted,
this change inCN was most noticeable at the higher
angles of attack.
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(a)  Right circular cones.

(b)  Rectangular wings.

Figure 1.  Models.
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(c)  Rooftop delta wings.

(d)  Caret wing.

Figure 1.  Continued.

D1 D2 D3 D4 D5
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(e)  Distinct body–wing–horizontal tail and blended body–wing configurations.

Figure 1.  Continued.
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(f)  Advanced blended body–wing configuration.

Figure 1.  Concluded.
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(a)  Cone models.

Figure 2.  Detailed drawings showing dimensions of models.
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(b)  Rectangular wings.

Figure 2.  Continued.
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(c)  Rooftop delta wings.

Figure 2.  Continued.
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(d)  Caret wing.

Figure 2.  Continued
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(e)  Blended body–wing hypersonic cruise configuration; dimensions normalized by body lengthl of 14.00 in.

Figure 2.  Continued.
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(f)  Distinct body–wing–tail hypersonic cruise configuration; dimensions normalized by body lengthl of 16.64 in.

Figure 2.  Continued.
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(g)  Advanced blended body–wing hypersonic cruise configuration; linear dimensions are in inches; dashed lines show components not in present
test.

Figure 2.  Concluded.
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(a) Μοdel C1; θ = 5°.

Figure 3.  Variation of normal force and axial force coefficients with Reynolds number atM∞ ≈ 6.86 for cones.
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(b)  Model C2;θ = 10°.

Figure 3.  Continued.

.4 .6 .8 1 2 4 × 1063
0

.5

1.0

CN

25

15

10

4

θ = 10°

Model C2

CA

20

15

10

4

0

Inviscid theory,
GASP (refs. 20
and 23)

2 4 6 8 10 12 14 × 10–40

.05

.10

.15

.20

20

Inviscid theory (ref. 23)

Viscid theory,
GASP
(ref. 20)

Viscid theory, GASP
(ref. 20)

Fairing

Steel model, l = 3.365 in.
Aluminum model, l = 8.5 in.
GASP calculation points

α, deg

α, deg

1/√Rl

Rl



32

(c)  Model C3;θ = 20°.

(d)  Model C4;θ = 30°.

Figure 3.  Concluded.
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(a)  Model W1;t/c = 0.111;V2/3/Sp = 0.210;A = 0.35.

Figure 4.  Variation of normal force and axial force coefficients with Reynolds number atM∞ ≈ 6.86 for rectangular
wings.
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(b)  Model W2;t/c = 0.234;V2/3/Sp = 0.234;A = 1.07.

Figure 4.  Continued.

14

8

0

t/c = 0.234

V2/3/Sp = 0.234

A = 1.07

Model W2

0

4

8

13.18

Inviscid theory, TW–PM

2 4 6 8 10 12 14 × 10–40

.01

.02

.03

.04

.05

13.18

4

.5 .6 .7 .8 .9 1 2 × 106
–.2

–.1

0

.1

.2

Inviscid theory, TW–PM

6.879M∞ = 6.802

Fairing

CN

CA

α, deg

α, deg

1/√Rl

Rl



35

(c)  Model W3;t/c = 0.31;V2/3/Sp = 0.200;A = 3.00.

Figure 4.  Continued.
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(d)  Model W4;t/c = 0.1163;V2/3/Sp = 0.147;A = 1.07.

Figure 4.  Concluded.
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(a)  Model D1;Λ = 75°; θ = 5°; t/cr = 0.088;V2/3/Sp = 0.147;A = 1.07.

Figure 5.  Variation of normal force and axial force coefficients with Reynolds number atM∞ ≈ 6.86 for delta wings.
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(b)  Model D2;Λ = 80°; θ = 5°; t/cr = 0.088;V2/3/Sp = 0.168;A = 0.702.

Figure 5.  Continued.
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(c)  Model D3;Λ = 75°; θ = 10°; t/cr = 0.176;V2/3/Sp = 0.234;A = 1.07.

Figure 5.  Continued.
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(d)  Model D4;Λ = 80°; θ = 10°; t/cr = 0.176;V2/3/Sp = 0.268;A = 0.702.

Figure 5.  Continued.
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(e)  Model D5;Λ = 85°; θ = 5°; t/cr = 0.088;V2/3/Sp = 0.210;A = 0.35.

Figure 5.  Concluded.
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Figure 6.  Variation of normal force and axial force coefficients with Reynolds number atM∞ ≈ 6.86 for caret wing.
Λ = 75°; θ = 6.63°; t/cr = 0.1163;V2/3/Sp = 0.178;A = 1.07.
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(a)  Model W4;α = 9°; M∞ = 6.86;Rl = 0.99× 106.

(b)  Model D1;α = 7°; M∞ = 6.89; Rl = 3.88 × 106.

Figure 7.  Oil flow on models.
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(c)  Model D5;α = 8.5°; M∞ = 6.69; Rl = 0.663 × 106.

(d)  Caret wing;α = 7.5°; M∞ = 6.83; Rl = 1.51 × 106.

Figure 7.  Concluded.
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Figure 8.  Theoretical and experimental axial force coefficients atM∞ = 6.86 andα = 0° for simple configurations under
laminar flow conditions.
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(a)  BWEVI withδE = 0°.

Figure 9.  Variation of normal force coefficients with Reynolds number atM∞ ≈ 6.86 for blended body–wing hypersonic
cruise configuration.
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(b)  BWEVI with δE = −5°.

(c)  BWEVI with δE = −10°.

Figure 9.  Continued.
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(d)  BWEVI with δE = −15°.

(e)  BWEV withδE = 0°.

Figure 9.  Concluded.
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(a)  BWHVI with δH = 0°.

Figure 10.  Variation of normal force coefficients with Reynolds number atM∞ ≈ 6.86 for distinct body–wing–
horizontal tail hypersonic cruise configuration.
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(b)  BWHVI with δH = −5°.

(c)  BWHVI with δH = +5°.

Figure 10.  Continued.
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(d)  BWHVI with δH = 0°; β = −4°.

(e)  BWHV withδH = 0°.

Figure 10.  Concluded.
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(a)  Normal force.

Figure 11.  Variation of force coefficients with Reynolds number atM∞ ≈ 8.00 for advanced blended body–wing
hypersonic cruise configuration.
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(b)  Axial force.

Figure 11.  Concluded.
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Figure 12.  Variation of normal force coefficients with Reynolds number atM∞ ≈ 6.00 for advanced blended body–wing
hypersonic cruise configuration.
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Approach section Expansion section

x, in. z, in. x, in. z, in. x, in. z, in. x, in. z, in.

−1.736 1.950 0 0.0467 4.861 1.2200 41.033 5.188
−1.615 1.761 0.021 0.0469 5.731 1.440 42.931 5.256
−1.493 1.573 0.039 0.0471 6.761 1.680 44.924 5.318
−1.249 1.196 0.055 0.0474 7.982 1.942 47.016 5.375
−1.005 0.837 0.071 0.0478 9.432 2.226 49.213 5.424
−0.761 0.507 0.090 0.0483 10.257 2.377 50.353 5.446
−0.713 0.446 0.115 0.0493 11.155 2.533 51.521 5.466
−0.664 0.385 0.138 0.0502 12.137 2.695 52.719 5.484
−0.615 0.330 0.160 0.0513 13.208 2.862 53.946 5.500
−0.566 0.277 0.178 0.0523 14.378 3.035 63.889 5.500
−0.518 0.227 0.215 0.0546 15.656 3.212
−0.469 0.183 0.243 0.0566 17.054 3.392
−0.420 0.146 0.263 0.0582 18.583 3.577
−0.371 0.120 0.310 0.0624 20.256 3.764
−0.347 0.109 0.356 0.0672 22.090 3.954
−0.323 0.099 0.400 0.0725 23.071 4.049
−0.298 0.090 0.442 0.0785 24.099 4.144
−0.274 0.082 0.482 0.0848 25.175 4.241
−0.250 0.073 0.524 0.0924 26.302 4.334
−0.225 0.0682 0.641 0.1169 27.482 4.427
−0.201 0.0634 0.721 0.1356 28.719 4.520
−0.176 0.0585 0.823 0.1605 30.016 4.612
−0.152 0.0536 0.953 0.1935 31.375 4.702
−0.128 0.0526 1.123 0.2373 32.799 4.790
−0.103 0.0507 1.679 0.3821 34.292 4.876
−0.079 0.0487 2.413 0.5744 35.859 4.959
−0.030 0.0468 3.161 0.7716 37.501 5.039
−0.016 0.0467 3.908 0.9694 39.225 5.116

Figure 13.  Design of invar nozzle of Langley 11-Inch Hypersonic Tunnel.
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Figure 14.  CFD grid in base plane of models. For cone, 33 percent shown, and for other models, 50 percent shown.
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Figure 15.  Ratio of disk diameter to effective test section height for determination of wind tunnel model size. Symbols
with ticks indicate thatδ*  was assumed to be approximately equal to0.5δ.
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Figure 16.  Normal force coefficient for infinite-span flat wing at various angles of attack and pressure coefficients for
right circular cones atα = 0° versus free-stream Mach number.
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Figure 17.  Pressure coefficients on compression and expansion sides of infinite-span flat wing versus free-stream Mach
number.
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